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ONE-DIMENSIONAL PROJECTION OF A LIQUID SHELL BY AN EXPLOSIVE CHARGE 

V. K. Kedrinskii and N. N. Chernobaev UDC 532.528 

Introduction. The problem considered here is associated with the cavitational rupture 
of a liquid with a free surface under an explosive load. The concept of cavitational rupture 
is based on the fact that cleavages arise in cavitating liquids behind the leading edge 
of intense rarefaction waves in underwater explosions at shallow depths [i]. Detailed experi- 
mental analysis of the nature and dynamics of cavitation effects has shown that the rupture 
process has distinctive features and has a number of stages: a) unrestricted growth (a neces- 
sary condition) of cavitation nuclei up to the "bulk" bubble density, corresponding to a bulk 
concentration of 0.5-0.75; b) formation of foam-type structures and their breakup into frag- 
ments, i.e., cleavages; c) the transformation of the cavitating cleavages into a drop struc- 
ture (structure of a splash dome on the free surface [i]). 

Under an explosive load a real liquid, containing microinhomogeneities as cavitation 
nuclei being in essence a two-phase medium for rarefraction waves, is transformed into a gas- 
drop state during rupture. This process can be defined as the inversion of the two-phase 
nature of the medium and is a fundamental problem of explosion hydrodynamics, including a 
number of independent areas. One of them deals with the mechanism of the transformation of 
a foam structure into a drop structure. This is a sort of relaxation process, which calls 
for a detailed study. Getz and Kedrinskii [2] attempted to eliminate it in order to construct 
a model and analyze the dispersal of close packed drops and also proposed a model of instan- 
taneous inversion of a cavitating liquid into a drop structure. 

Another area involves numerical analysis of the parameters and structure of a cavitating 
liquid within the framework of the model of instantaneous relaxation of motion in the cavita- 
tion zone, making it possible to consider the dynamics of the zone up to high bulk concentra- 
tions [3]. As an example of this, we consider the problem of explosive projection of a liquid 
shell in the one-dimensional formulation. 

Formulation of the Problem. A spherical explosive charge of initial radius r 0 lies at 
the center of a spherical liquid shell of radius r I. After initiation of the charge at the 
center a detonation wave reaches the charge-shell contact boundary at time t = 0. The gas- 
kinetic flow formed at t > 0 is calculated for a wide range of m = rm/r 0 (m = 2-10). 

As the working medium we consider a real liquid, which is construed as a liquid with a 
natural content of microinhomogeneities of the type of microbubbles of free gas [4]. Their 
concentration is s 0 < 10 -7 . The effect of the compressibility of the gas component at such 
low values of a0 is insignificant and so the propagation of shock waves in a real liquid is 
described well by the one-phase model. Taking this into account, we calculated the shock 
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wave flow in the indicated region in the approximation of ideal compressibility of the liquid 
on the basis of [15]. The development of cavitation in the zone of discharge due to the inter- 
action of the shock wave with the free surface of the real liquid is calculated with the model 
of instantaneous relaxation of the negative pressure in the unloading wave [3]. In this model 
the liquid is assumed to have zero strength because of the development of bubble cavitation 
in it. 

The system of equations for calculating the propagation of a shock wave in water and the 
wave field in the noncavitating region of flow in mass Lagrange coordinates with the introduc- 
tion of the artificial viscous pressure q has the form [5] 

Or/at = u; ( 1 )  

a~ % a (r~--l.). 
at - -  ~v-1 a ~  ' ( 2 )  

Ou ( 1 ) v - - l  O ( p - L  q). 
at - -  vo o~ ' (3) 

a8 my 
at - -  (P + q) b-/-; (4) 

p = p(~, ~ .  ( 5 )  

Here v = I, 2, 3, respectively, for plane, cylindrical, and spherical symmetry of flow; r 
and ~ are the Euler and Lagrange coordinates; t is the time; v 0 and v are initial and instan- 
taneous specific volumes; p is the pressure; and ~ is the specific internal energy. The 
quantity q was defined, in much the same way as in [5], as the sum of a linear and a quadratic 
term. We assumed that q = 0 in the region of the unloading wave, where 3p/a~ > 0. 

For the detonation products we used an equation of state [6] of the form p = (y(p) - 

|)pe ~ ~(9) (?(p), ~(p) are functions given in [6] and p = l/v). For water we took the Walker- 
Sternberg equation of state [7], which applies for pressures up to 2.5-10 4 MPa: 

p = A(~)/v § l~(~)/v ~ + ~(@'v  ~ + A(=)/v: 

(fi(a) (is 1 ..... 4) are polynomial functions of the internal energy [7], which give a highly 
accurate approximation of data on the static and shock compressibility of water. 

The cavitation process, in the approximation of instantaneous relaxation of the negative 
pressure, starts when zero pressure is reached in the wave. The pressure p in the liquid 
component of the mixture attains an equilibrium value equal to the vapor saturation pressure 
Ps (the elastic component relaxes instantaneously) i 

P = Ps (6) 

The flow of a cavitating liquid is described by virtually the same system of equations, with 
all the functions replaced by their average value (for the mixture) and the equation of con- 
servation of momentum, 

au/at = O. (7) 

It follows from (7) that the profile of the mass velocity in the cavitation zone is "frozen": 
u = F($). The system is closed by the expression for the mean specific volume v of the mix- 
ture: 

Here v z is the specific volume of the liquid at the time of pressure relaxation, with v~ # v 0 
because of heating of the liquid in the shock wave; and v b is the volume of bubbles per unit 
mass of mixture. We assume that the specific internal energy of the liquid is conserved (~ = 
sz(g)) and corresponds to its value at the time of pressure relaxation. If the condition 
corresponding to the disappearance of cavitation (v s = 0 for 8v/St < 0) occurs in the region 
under consideration, e.g., because of compression of the medium in the zone adjacent to the 
boundary with the detonation products, the calculation in the given subregion is continued 
with (1)-(5). The system of equations (1)-(8) is closed. 
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The problem is solved with the following initial and boundary conditions. At t = 0 when 
the detonation wave reaches the contact boundary the distribution of p, u, and v in the deto- 
nation products is found from analytical formulas given in [8]. The calculation was carried 
out for the explosive TG 50/50 with the specific Volume Vex p = 6.25"10 -~ m3/kg, the specific 
energy of the explosion Q = 4.88"103 kJ/kg, and the Chapman-Jouguet parameters at the detona- 
tion wave from pj = 2.19"104 MPa, vj = 4.7"10 -4 m3/kg, and uj = 1.85"103 m/sec. The water 

(r 0 < $ < rl, where $ = r at t = 0) is under normal conditions: p = P0, v = v0, u = 0 (P0 = 
0.i MPa, v 0 = 10 -3 m3/kg). The volume is constant (p = P0) at the outer boundary of the liquid 

shell until the shock wave reaches it. After the shock wave interaction the pressure in the 
atmosphere is calculated as for an associated shock wave [9]: 

D -- ?0 + ! PI,~ -> i\~ 2 I -- . 

Here c = 330 m/sec is the velocity of sound in air; Y0 = 1.4 is the adiabatic exponent of air; 
Vg = 1.0 m3/kg is its specific volume; and D is the shock wave velocity in air. 

When solving the problem we check the balance of the integrated energy of the systems of 
detonation products + liquid shell. The total energy is written as the sum es(t) = el(t) + 
e2(t ) + e3(t ) + e4(t) , where 

r1(O rl(t) 
N- ~ Y e 1=k ~r~-ldr, e~=k --r-Jdr 

%(0 to(t) 

are the kinetic and internal energy of the liquid; 

to(t) ro(O 

e a ~ k  ~ r " - l d r ,  <1 = k T r v - l d c  

0 0 

are the kinetic and internal energy of the detonation products. Here k = 4~, ~, 1 for v = 
3, 2, i, respectively. We ignore the energy transferred to the atmosphere, because the shock 
wave is relatively weak in the air, and also ignore the energy associated with the vapor-gas 
phase in the bubbles, since its density and heat capacity are low in comparison with those of 
the liquid. 

The numerical analysis is carried out in the dimensionless variables r' = r/R, S' = S/R, 

t' = t/T, v' = v/V, v' = v/V, p' = p/P, u' = u/U, and s' = s/E (the upper-case letters denote 

dimensional constants). We take r l, r0, Q, v 0, and Vex p to be the determining parameters of 
the problem. We find the velocity U from the condition that the total energy of the shock 
wave is e~ual to the kinetic energy of the liquid shell projected like a solid: U= (2Q/(m v - 
l)v0Vexp) I/2. Substitution of dimensionless variables into the system of equations (1)-(8) shows ~ 
that the flow remains similar when the parameters T = R/U, P = U2/V, and E = U 2 are constant. 
This is confirmed by direct numerical intergration of the system (1)-(8) for various values of 

r I and r 0 at fixed values of m = rl/r0, Q, v0, and Vex p with the initial and boundary condi_ 

tions mentioned above. Henceforth we omit the primes after the dimensionless variables. 

Results of Calculation. Figure I shows the results obtained from calculations of the 
dynamics of the distribution in the space of the pressure p, mass velocity u, and density 
I/v (I/v in the cavitation zone) for times t = 0.19, 0.38, and 1.4 (lines 1-3, respectively). 
Here the vertical lines with a point correspond to inner boundary of the gas-liquid region 
and the lines without a point correspond to the outer boundary. We consider the case m = 2, 
R = 3"10 -2 m, v = 3, V = 10 -3 ma/kg, which corresponds to the values U = 1494 m/sec, T = 
2-10 -s sec, and P = 2~ a MPa. When the explosion has decayed at the contact boundary 
between the detonation products and the water at t = 0 a shock wave propagates in the liquid 
and, transforming, reaches the free surface (Fig. la-c, curves i). The elastic energy of the 
liquid is transformed into kinetic energy in the unloading wave formed as a result of the 
shock wave interaction with the free surface. The rarefaction wave is focused on the explo- 
sion cavity and behind its front the mass velocity increases while the density of the two- 
phase mixture decreases as a result of the vigorous cavitation. The distribution of the per- 
tinent parameters at the time corresponding to the approach of the unloading wave to the ex- 
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plosion cavity is shown by curves 2 in Fig. la-c. We see that the interaction of the unload- 
ing wave with the detonation products causes the velocity of the contact boundary between the 
detonation products and the water to increase abruptly (Fig. ib) and to remain high after 
that. 

By the time t = 1.4 (Fig ib, c) characteristic distributions of the velocity and density 
profile, with maxima at the boundaries, forms in the projected shell. The first maximum is 
determined by the increased pressure from the detonation products of the explosion, hindering 
the development of cavitation in a narrow layer that is adjacent to the detonation products 
and corresponds to a layer of homogeneous liquid. The two-phase undergoes inertial dilatation 
in the cavitation zone and the bulk concentration of the gas phase corresponding to the lower 
value of the close packing of bubbles (~, = 0.5) is already reached at t, = 0.6 in the example 
under consideration. The counter pressure generated behind the associated shock wave in the 
air causes a local increase in the density of the gas--liquid mixture in the neighborhood of its 
outer boundary (Fig. ic, curve 3). This increase in the density of the medium near the free 
surface can be treated as the formation of a "cleavage" [i0, ii]. The distinctive features of 
the density variation in the projected shell are confirmed qualitatively by the experimental 
results of [12], where the fine structure of the flow was recorded by the dynamic pressure and 
showed that it is characterized by a zone of developing cavitation and a homogeneous layer of 
liquid on its inner boundary. A characteristic feature of the development of cavitation near 
a free surface is that the free surface maintains a high mass velocity which persists for a rela- 
tively long time (Fig. ib, curves 2, 3). A secondary wave forms after reflection of the 
detonation products from the center. In the example under consideration this wave propagates 
through the detonation products at a lower velocity than that of the contact boundary between 
the detonation products and the water, which thus do not interact. 

Figure 2 shows the graph of the balance of the integrated energy e s as the time depen- 
dence of the sum of its individual components, relative to the total initial energy of the 
explosive e 0. The deviation of es/e 0 from 1 during the reading was less than 1%. The kink 
in the upper curve of Fig. 2 at t = 0.2 corresponds to the arrival of the shock wave at the 
free surface of the liquid and the onset of transformation of the elastic energy of the liquid 
into kinetic energy. The relative kinetic energy el/e 0 of the liquid increases with time 
because the explosion products do work to accelerate the liquid of the shell. The ratio el/e 0 
tense to 0.6 with time. When this is taken into account the average velocities u, of the thin 
liquid shells projected by the explosion can be estimated as u, = /~U (see Fig. ib). 

After relaxation of the pressure the relative internal energy e2/e 0 of the liquid is 
the residual thermal energy due to heating of the liquid at the shock-wave front and cooling 
along the unloading isentrope. In the liquid, where the pressure at the shock-wave front 
exceeds 5.103 MPa, wet steam can form during unloading to 0.i MPa [6] since the unloading 
isentrope intersects the saturation curve. The indicated region for v = 3 and 2 is bounded 

by the ranges 1 < ~/r 0 < 1.25 and 1 < ~/r 0 < 1.4, respectively. 
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Calculations showed that as m = rl/r 0 increases the main stages of the process are quali- 
tatively similar to those mentioned above. Secondary compression waves, reflected from the 
center and the contact boundary between the detonation products and water, may enter into 
multiple interactions, but these do not have any appreciable effect on the dynamics of the 
expanding shell. We merely note that with increasing m there is a natural decrease in the 
cavitation rate, characterized by By~St in the given model. This is attributed to a drop in 
the pressure gradient behind the front of the shock wave, reaching the free surface, and 
hence a decrease in the strain (tension) rate of the medium in the cavitation zone. As for 
the symmetry of the process, in real time the density of the mixture in the cavitation zone 
at a fixed specific explosion energy decreases more rapidly for a sphere than for a cylinder. 

Experiment. The structure of the liquid shell projected by the explosion was recorded 
experimentally by taking pulsed x-ray photographs. Figure 3a shows a diagram of the experi- 
mental arrangement and successive x-ray photographs 1-3 of parts of it, taken at t = 29"10 -6 , 
34"10 -6 , and 53"10 -6 sec, respectively. The liquid (water) 4 was bounded externally by a 
rigid spherical shell 5 of inner radius r i = 0.03 m and thickness 10 -3 m, made of epoxy- 
impregnated gauze. A TG 50/50 charge 6 of radius r 0 = 0.015 m was set off by an LD-34 deto- 
nator. As in the calculation given above, m = 2. The x-ray photographs were obtained by 
double exposure: freeze-frame (dark segment) at t = 0 and dynamics. From Fig. 3a (frames I, 
2) we see that the structure of the projected liquid shell, according to calculation, includes 
an outer region of reduced density (cavitation zone I) and a narrow inner zone of increased 
density (liquid layer II). The thickness of the cavitation zone for the times indicated 
changes little; for spherical symmetry of the flow this corresponds to the spreading of the 
gas-liquid mixture. Cavitation is not recorded at t = 53"10 -6 sec (Fig. 3a, frame 3) because 
of the low density of the mixture in the zone. The velocity of the boundaries of the pro- 
jected shell is slightly lower in the experiment (-15%) than in the calculations, possibly 
because of the strength properties of the external hard shell. 

A film strip of the dispersal process, including later times, is shown in Fig. 3b for 
the experimental conditions indicated above. A streamer-type structure with a regular distri- 
bution of streams forms on the outer boundary of the shell. Their relative mass evidently is 
low since they are not seen in the x-ray photographs. The velocity of the streams can be 
higher than that of the shock wave (SW) in air (Fig. 3b, c), and their formation is due in par- 
ticular to the displacement of liquid through cracks in the fracturing outer hard shell. A 
film strip of the process is shown in Fig. 3c for the same loading conditions, but with an 
outer shell made of thin rubber. The outer boundary in that case remains stable. 
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Conclusion. Under an explosive load liquid with a free surface breaks up into drops. 
Let us note some of the distinctive features stemming from the fragmentation of the liquid 
and possible estimates of typical drop size. In the numerical analysis carried out we dis- 
regarded the internal stresses that arise when the cavitating liquid spreads. At the same 
time, these stresses may arise because of the deformation of bubbles in the velocity field 
formed (deviation from the symmetry of microflows). This leads to a buildup of bubbles with 
excess free energy and formation of microstresses in the liquid near the parts of bubbles with 
the maximum curvature. Moreover, fine-scale effects that are nonequilibrium with respect to 
pressure and are due to the inertia of the mass of liquid associated with the bubbles occur 
in the cavitation zone, causing stresses of the type of Reynolds turbulent pulsations [13]. 
These processes should manifest themselves particularly when the bubble reach the limiting 
concentrations ~,, corresponding to their close packing (0.52 < ~, < 0.75). Clearly, in 
this case it becomes energetically more advantageous for new free surfaces (breaks) to form 
in the directions of maximum deformation of the media by the indicated stresses. 

The time t, in which the lowest limiting concentration is reached can be evaluated as 
t, = I/~ (~ = div u~($) is the strain rate of the medium in the cavitation zone in the approxi- 
mation under consideration). This time can be regarded as the characteristic time of the 
onset of the breakup of the medium into fragments. Since the limiting concentrations a, are 
reached unevenly in the entire volume (see Fig. ic), the fragmentation is a nonuniform process 
that is stretched out over time. 

The characteristic size d of the drops formed can be estimated from energy considera- 
tions [14]. Equating the kinetic energy of the deformation motion of a liquid particle of 
size d to the energy expended on the formation of the free surface, d3p(d~) 2 = od 2 (p is the 
density of the liquid and o is the surface tension), we obtain d = (o/pk2) I/3 

Our calculations have shown that in the range 2 ! m ! I0 we have 103 < ~ < 105 sec -1, 
which for water corresponds to the drop sizes in the range 2"i0 -s ~ d S 50"10 -5 m and cha- 
racteristic times i0 -s ~ t, J 10 -3 sec. The order of magnitude is entirely feasible. 
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